62 research outputs found

    ‘Functional Connectivity’ Is a Sensitive Predictor of Epilepsy Diagnosis after the First Seizure

    Get PDF
    Background: Although epilepsy affects almost 1 % of the world population, diagnosis of this debilitating disease is still difficult. The EEG is an important tool for epilepsy diagnosis and classification, but the sensitivity of interictal epileptiform discharges (IEDs) on the first EEG is only 30–50%. Here we investigate whether using ‘functional connectivity ’ can improve the diagnostic sensitivity of the first interictal EEG in the diagnosis of epilepsy. Methodology/Principal Findings: Patients were selected from a database with 390 standard EEGs of patients after a first suspected seizure. Patients who were later diagnosed with epilepsy (i.e. $two seizures) were compared to matched nonepilepsy patients (with a minimum follow-up of one year). The synchronization likelihood (SL) was used as an index of functional connectivity of the EEG, and average SL per patient was calculated in seven frequency bands. In total, 114 patients were selected. Fifty-seven patients were diagnosed with epilepsy (20 had IEDs on their EEG) and 57 matched patients had other diagnoses. Epilepsy patients had significantly higher SL in the theta band than non-epilepsy patients. Furthermore, theta band SL proved to be a significant predictor of a diagnosis of epilepsy. When only those epilepsy patients without IEDs were considered (n = 74), theta band SL could predict diagnosis with specificity of 76 % and sensitivity of 62%. Conclusion/Significance: Theta band functional connectivity may be a useful diagnostic tool in diagnosing epilepsy

    A reproducible brain tumour model established from human glioblastoma biopsies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates.</p> <p>Methods</p> <p>In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features.</p> <p>Results</p> <p>The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages <it>in vivo</it>, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 <it>in vivo </it>passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms.</p> <p>Conclusions</p> <p><it>In vivo </it>passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to <it>in vitro </it>propagated cell lines for dissecting mechanisms of brain tumour progression.</p

    Endophenotypes in a Dynamically Connected Brain

    Get PDF
    We examined the longitudinal genetic architecture of three parameters of functional brain connectivity. One parameter described overall connectivity (synchronization likelihood, SL). The two others were derived from graph theory and described local (clustering coefficient, CC) and global (average path length, L) aspects of connectivity. We measured resting state EEG in 1,438 subjects from four age groups of about 16, 18, 25 and 50 years. Developmental curves for SL and L indicate that connectivity is more random at adolescence and old age, and more structured in middle-aged adulthood. Individual variation in SL and L were moderately to highly heritable at each age (SL: 40–82%; L: 29–63%). Genetic factors underlying these phenotypes overlapped. CC was also heritable (25–49%) but showed no systematic overlap with SL and L. SL, CC, and L in the alpha band showed high phenotypic and genetic stability from 16 to 25 years. Heritability for parameters in the beta band was lower, and less stable across ages, but genetic stability was high. We conclude that the connectivity parameters SL, CC, and L in the alpha band show the hallmarks of a good endophenotype for behavior and developmental disorders

    Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both epilepsy patients and brain tumor patients show altered functional connectivity and less optimal brain network topology when compared to healthy controls, particularly in the theta band. Furthermore, the duration and characteristics of epilepsy may also influence functional interactions in brain networks. However, the specific features of connectivity and networks in tumor-related epilepsy have not been investigated yet. We hypothesize that epilepsy characteristics are related to (theta band) connectivity and network architecture in operated glioma patients suffering from epileptic seizures. Included patients participated in a clinical study investigating the effect of levetiracetam monotherapy on seizure frequency in glioma patients, and were assessed at two time points: directly after neurosurgery (t1), and six months later (t2). At these time points, magnetoencephalography (MEG) was recorded and information regarding clinical status and epilepsy history was collected. Functional connectivity was calculated in six frequency bands, as were a number of network measures such as normalized clustering coefficient and path length.</p> <p>Results</p> <p>At the two time points, MEG registrations were performed in respectively 17 and 12 patients. No changes in connectivity or network topology occurred over time. Increased theta band connectivity at t1 and t2 was related to a higher total number of seizures. Furthermore, higher number of seizures was related to a less optimal, more random brain network topology. Other factors were not significantly related to functional connectivity or network topology.</p> <p>Conclusions</p> <p>These results indicate that (pathologically) increased theta band connectivity is related to a higher number of epileptic seizures in brain tumor patients, suggesting that theta band connectivity changes are a hallmark of tumor-related epilepsy. Furthermore, a more random brain network topology is related to greater vulnerability to seizures. Thus, functional connectivity and brain network architecture may prove to be important parameters of tumor-related epilepsy.</p

    The Connectome Visualization Utility: Software for Visualization of Human Brain Networks

    Get PDF
    In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, and making sense of the complex networks in connectomics requires sophisticated visualization and analysis software. The current availability of software packages to analyze the human connectome is limited. The Connectome Visualization Utility (CVU) is a new software package designed for the visualization and network analysis of human brain networks. CVU complements existing software packages by offering expanded interactive analysis and advanced visualization features, including the automated visualization of networks in three different complementary styles and features the special visualization of scalar graph theoretical properties and modular structure. By decoupling the process of network creation from network visualization and analysis, we ensure that CVU can visualize networks from any imaging modality. CVU offers a graphical user interface, interactive scripting, and represents data uses transparent neuroimaging and matrix-based file types rather than opaque application-specific file formats

    Abnormal Reorganization of Functional Cortical Small-World Networks in Focal Hand Dystonia

    Get PDF
    We investigated the large-scale functional cortical connectivity network in focal hand dystonia (FHD) patients using graph theoretic measures to assess efficiency. High-resolution EEGs were recorded in 15 FHD patients and 15 healthy volunteers at rest and during a simple sequential finger tapping task. Mutual information (MI) values of wavelet coefficients were estimated to create an association matrix between EEG electrodes, and to produce a series of adjacency matrices or graphs, G, by thresholding with network cost. Efficiency measures of small-world networks were assessed. As a result, we found that FHD patients have economical small-world properties in their brain functional networks in the alpha and beta bands. During a motor task, in the beta band network, FHD patients have decreased efficiency of small-world networks, whereas healthy volunteers increase efficiency. Reduced efficient beta band network in FHD patients during the task was consistently observed in global efficiency, cost-efficiency, and maximum cost-efficiency. This suggests that the beta band functional cortical network of FHD patients is reorganized even during a task that does not induce dystonic symptoms, representing a loss of long-range communication and abnormal functional integration in large-scale brain functional cortical networks. Moreover, negative correlations between efficiency measures and duration of disease were found, indicating that the longer duration of disease, the less efficient the beta band network in FHD patients. In regional efficiency analysis, FHD patients at rest have high regional efficiency at supplementary motor cortex (SMA) compared with healthy volunteers; however, it is diminished during the motor task, possibly reflecting abnormal inhibition in FHD patients. The present study provides the first evidence with graph theory for abnormal reconfiguration of brain functional networks in FHD during motor task

    The Brain Matures with Stronger Functional Connectivity and Decreased Randomness of Its Network

    Get PDF
    We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years) by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998) graph parameters C (local clustering) and L (global path length) for alpha (∼10 Hz), beta (∼20 Hz), and theta (∼4 Hz) oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ∼50 yrs). Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ∼18 yrs). Older age (55+) was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05), while path length was related to both white matter (alpha: max. r = 38, p<001) and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001) volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain

    Characterization of Functional and Structural Integrity in Experimental Focal Epilepsy: Reduced Network Efficiency Coincides with White Matter Changes

    Get PDF
    BACKGROUND: Although focal epilepsies are increasingly recognized to affect multiple and remote neural systems, the underlying spatiotemporal pattern and the relationships between recurrent spontaneous seizures, global functional connectivity, and structural integrity remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we utilized serial resting-state functional MRI, graph-theoretical analysis of complex brain networks and diffusion tensor imaging to characterize the evolution of global network topology, functional connectivity and structural changes in the interictal brain in relation to focal epilepsy in a rat model. Epileptic networks exhibited a more regular functional topology than controls, indicated by a significant increase in shortest path length and clustering coefficient. Interhemispheric functional connectivity in epileptic brains decreased, while intrahemispheric functional connectivity increased. Widespread reductions of fractional anisotropy were found in white matter regions not restricted to the vicinity of the epileptic focus, including the corpus callosum. CONCLUSIONS/SIGNIFICANCE: Our longitudinal study on the pathogenesis of network dynamics in epileptic brains reveals that, despite the locality of the epileptogenic area, epileptic brains differ in their global network topology, connectivity and structural integrity from healthy brains

    MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition

    Get PDF
    OBJECTIVE: To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. METHODS: We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG) recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. RESULTS: LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4-8 Hz), similar to NGL patients. HGG patients' networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. CONCLUSION: Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients' networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline
    corecore